Existence of non-trivial solutions for fractional Schrödinger-Poisson systems with subcritical growth

نویسندگان

  • A. Keyhanfar Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran
  • G.A. Afrouzi Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran
  • S.H. Rasouli Department of Mathematics, Faculty of Basisc Sciences, Babol(Noshirvani) University of Technology Babol, Iran
چکیده مقاله:

In this paper, we are concerned with the following fractional Schrödinger-Poisson system:    (−∆s)u + u + λφu = µf(u) +|u|p−2|u|, x ∈R3 (−∆t)φ = u2, x ∈R3 where λ,µ are two parameters, s,t ∈ (0,1] ,2t + 4s > 3 ,1 < p ≤ 2∗ s and f : R → R is continuous function. Using some critical point theorems and truncation technique, we obtain the existence and multiplicity of non-trivial solutions with the help of the variational methods.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a class of nonlinear fractional Schrödinger-Poisson systems

In this paper, we are concerned with the following fractional Schrödinger-Poisson system:    (−∆s)u + V (x)u + φu = m(x)|u|q−2|u|+ f(x,u), x ∈ Ω, (−∆t)φ = u2, x ∈ Ω, u = φ = 0, x ∈ ∂Ω, where s,t ∈ (0,1], 2t + 4s > 3, 1 < q < 2 and Ω is a bounded smooth domain of R3, and f(x,u) is linearly bounded in u at infinity. Under some assumptions on m, V and f we obtain the existence of non-trivial so...

متن کامل

Existence of three solutions for a class of fractional boundary value systems

In this paper, under appropriate oscillating behaviours of the nonlinear term, we prove some multiplicity results for a class of nonlinear fractional equations. These problems have a variational structure and we find three solutions for them by exploiting an abstract result for smooth functionals defined on a reflexive Banach space. To make the nonlinear methods work, some careful analysis of t...

متن کامل

Existence of Solutions to Fractional Hamiltonian Systems with Combined Nonlinearities

This article concerns the existence of solutions for the fractional Hamiltonian system −tD ∞ ` −∞D α t u(t) ́ − L(t)u(t) +∇W (t, u(t)) = 0, u ∈ H(R,R), where α ∈ (1/2, 1), L ∈ C(R,Rn ) is a symmetric and positive definite matrix. The novelty of this article is that if τ1|u| ≤ (L(t)u, u) ≤ τ2|u| and the nonlinearity W (t, u) involves a combination of superquadratic and subquadratic terms, the Ham...

متن کامل

Existence of Entropy Solutions for Nonsymmetric Fractional Systems

The present work focuses on entropy solutions for the fractional Cauchy problem of nonsymmetric systems. We impose sufficient conditions on the parameters to obtain bounded solutions of L∞. The solutions attained are unique and exclusive. Performance is established by utilizing the maximum principle for certain generalized time and space-fractional diffusion equations. The fractional differenti...

متن کامل

Infinitely many radial solutions for the fractional Schrödinger-Poisson systems

In this paper, we study the following fractional Schrödinger-poisson systems involving fractional Laplacian operator { (−∆)su+ V (|x|)u+ φ(|x|, u) = f(|x|, u), x ∈ R3, (−∆)tφ = u2, x ∈ R3, (1) where (−∆)s(s ∈ (0, 1)) and (−∆)t(t ∈ (0, 1)) denotes the fractional Laplacian. By variational methods, we obtain the existence of a sequence of radial solutions. c ©2016 All rights reserved.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 10  شماره Special Issue ( Nonlinear Analysis in Engineering and Sciences)

صفحات  13- 23

تاریخ انتشار 2019-12-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023